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Annals of Mathematics, 146 (1997), 111-147 

A rigid analytic Gross-Zagier formula 
and arithmetic applications 

By MASSIMo BERTOLINI1 and HENRI DARMON2 

(With an Appendix by B. Edixhoven) 
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Introduction 

Let f be a newform of weight 2 and squarefree level N. Its Fourier coeffi- 
cients generate a ring Of whose fraction field Kf has finite degree over Q. Fix 
an imaginary quadratic field K of discriminant prime to N, corresponding to 
a Dirichlet character E. The L-series L(f /K, s) = L(f, s)L(f 0 E, s) of f over 
K has an analytic continuation to the whole complex plane and a functional 
equation relating L(f/K, s) to L(f/K, 2 - s). Assume that the sign of this 
functional equation is 1, so that L(f/K, s) vanishes to even order at s = 1. 
This is equivalent to saying that the number of prime factors of N which are 
inert in K is odd. Fix any such prime, say p. 

The field K determines a factorization N = N+N- of N by taking N+, 
resp. N- to be the product of all the prime factors of N which are split, resp. 

'Partially supported by grants from MURST, CNR, and EC. 
2Partially supported by CICMA and by grants from CNR, FCAR, and NSERC. 
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112 MASSIMO BERTOLINI AND HENRI DARMON 

inert in K. Given a ring-class field extension H of K of conductor c prime to 
N, write Hn for the ring-class field of conductor cp'. It is an extension of H 
of degree en := 2u-1(p + I)pn-l, where u is the order of the group of roots of 
unity in the order 0 of K of conductor c. Recall that p splits in H/K, and 
the primes of H above p are totally ramified in Hn. For n > 1, a construction 
explained in [BD1, ?2.5] allows us to define a compatible collection of Heegner 
points Pn over Hn on a certain Shimura curve X. In the notations of [BD1, 
?1.3], X is the curve XN+PN-/P over Q attached to an Eichler order of level 
N+p in the indefinite quaternion algebra of discriminant N-7p. 

Let J be the jacobian of X, Jn the Neron model of J over Hn, and 4Pn 
the group of connected components at p of Jn. More precisely, 

4Pn = fflp@pp: 

where Ip is the group of connected components of the fiber at p of Jn and the 
sum is extended over all the primes p of Hn above p. 

Define a Heegner divisor an := (Pn) - (WNPn), where WN is the Atkin- 
Lehner involution denoted WN+pN- /p in [BD 1, ? 1.8]. We view an as an element 
of Jn, and let ?n be its natural image in 4Pn. 

We have found that the position of ?n in IPn is encoded in the special 
values of the L-functions attached to cusp forms of weight 2 on X twisted by 
characters X of A := Gal(H/K). 

More precisely, observe that the Galois group Gal(Hn/K) acts on J(Hn) 
and on Jn. Since the primes above p are totally ramified in Hn/H, the induced 
action on IPn factors through A. Define e := c P x1(g)g E Z[X][A], and 
let OX := e an- 

The ring 7r generated over Z by the Hecke correspondences on X acts 
in a compatible way on J(Hn), Jn and 4In. Write Ofq: 7r -? Of for the 
homomorphism associated to f by the Jacquet-Langlands correspondence (cf. 
[BD1, ?1.6], and let rf E 7r 0 Kf be the idempotent corresponding to Of. Fix 
nf E Of so that Tj= nfrff belongs to 7r Of , and define jjfX rTjf a-. 

The group In is equipped with a canonical monodromy pairing 

[ , In: n X n -- / 

which we extend to a hermitian pairing on Ion 0 Of [X] with values in 
Kf [X] /O0 [X], denoted in the same way by abuse of notation. Our main re- 
sult is: 

THEOREM A. Suppose that X is a primitive character of A. Then 

[(awaxn = 1 
L(fn/Kxi1) 

d .u2 nf (mod Of [X]), 

where (f,f) is the Petersson scalar product of f with itself, and d denotes the 
discriminant of 0. 
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GROSS-ZAGIER FORMULA AND ARITHMETIC APPLICATIONS 113 

The proof is based on Grothendieck's description of In [Groth], on the 
work of Edixhoven on the specialization map from J, to In [Edix], and on a 
slight generalization of Gross' formula for special values of L-series [GrI] (which 
we assume in this paper and which will be contained in [Dag]). Theorem A 
can be viewed as a p-adic analytic analogue of the Gross-Zagier formula, and 
was suggested by the conjectures of Mazur-Tate-Teitelbaum type formulated in 
[BD1, Ch. 5]. It is considerably simpler to prove than the Gross-Zagier formula, 
as it involves neither derivatives of L-series nor global heights of Heegner points. 

The above formula has a number of arithmetic applications. Let Af be 
the abelian variety quotient of J associated to of by the Eichler-Shimura con- 
struction. Following the methods of Kolyvagin, we can use the Heegner points 
an to construct certain cohomology classes in H1 (H, (Af)en), whose local be- 
haviour is related via Theorem A to L(A f/K, X, 1) = Hl, L(f a/K, x, 1), where 
a ranges over the set of embeddings of Kf in Q. This can be used to study the 
structure of the x-isotypical component Af (H)X := exAf (H) c Af (H) 0 Z[X] 
of the Mordell-Weil group Af (H). In particular, we show: 

THEOREM B. If L(Af /K,x,1) is nonzero, then Af (H)X is finite. 

When X = X, this result also follows from the work of Gross-Zagier [GZ] 
and Kolyvagin-Logachev [KL], but if X is nonquadratic the previous techniques 
cannot be used to study these questions. 

It is worth stating the following two corollaries of Theorem B. 

COROLLARY C. Let E/Q be a semistable elliptic curve, and assume that 
L(E/Q,1) is nonzero. Then E(Q) is finite. 

Proof. By the fundamental work of Wiles and Taylor-Wiles (cf. [W] and 
[TW]), E is modular. A theorem of Waldspurger [Wald] ensures the existence 
of an imaginary quadratic field K such that L(E/K, 1) is nonzero. Then 
Theorem B implies that E(K), and hence E(Q), are finite. 

The previously known proof invokes an analytic result of Bump-Friedberg- 
Hoffstein [BFH] and Murty-Murty [MM], according to which there exists an 
auxiliary imaginary quadratic field K such that all the primes dividing N are 
split in K and the first derivative L'(E/K, 1) is nonzero. In this setting, there 
is a Heegner point in E(K), arising from the modular curve parametrization 
Xo(N) --> E. This point has infinite order by the formula of Gross-Zagier 
[GZ]. Then Kolyvagin's theorem [Ko] implies that E(K) has rank one, and 
that E(Q) is finite. This proof is more general than ours, since it applies to 
all modular elliptic curves, and also yields the finiteness of the Shafarevich- 
Tate group of E. Our proof depends crucially on the existence of a prime p of 
multiplicative reduction, and only establishes the finiteness of the p-primary 
part of the Shafarevich-Tate group. 
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114 MASSIMO BERTOLINI AND HENRI DARMON 

Theorem B allows us to control the growth of Mordell-Weil groups over 
anticyclotomic Zh-extensions, addressing a conjecture of Mazur [Ma2]. Let f 
and K be as at the beginning of this section. Let 1, . . ., fk be primes not divid- 
ing N, and let Koo denote the compositum of all the ring-class field extensions 
of K of conductor of the form l ... fk, where ni,... ,nk are nonnegative 
integers. Thus, the Galois group of KQO/K is isomorphic to the product of a 
finite group by Zj, x ... x 74k, 

COROLLARY D. Assume that L(Af/K,X,1) 7 0 for almost all finite order 
characters of Gal(K,,/K). Then the Mordell- Weil group Af (Ko:) is finitely 
generated. 

(See the details of the proof in ?8.) Computations of root numbers show that 
L(f/K, x, s) vanishes to even order at s = 1 for all X as above, and it is 
expected that L(f/K, x, 1) be nonzero for almost all X. (For results in this 
direction, see [Rol] and [Ro2].) We remark that a result similar to Corollary D 
for the cyclotomic Zh-extension of Q has been announced recently by K. Kato. 

Theorems A and B provide a technique to study "analytic rank-zero situ- 
ations" in terms of Heegner points of conductor divisible by powers of a prime 
p of multiplicative reduction for Af and inert in K. What makes this possible, 
ultimately, is a "change of sign" phenomenon: If L(f/K, s) vanishes to even 
order, and X is an anticyclotomic character of conductor cp' with c prime to 
N, then L(f/K, X, s) vanishes to odd order, and there are Heegner points on 
Af defined over the extension cut out by X. The previous applications of the 
theory of Heegner points, such as the analytic formula of Gross-Zagier and the 
methods of Kolyvagin, occur in situations where L(f/K, s) and L(f/K, X, s) 
both vanish to odd order. 

Acknowledgements. We are very grateful to Bas Edixhoven for writing 
an appendix to this paper, which provides a crucial step towards proving our 
results. We also thank the referee for useful remarks. 

1. Gross' formula for special values of L-series 

We keep the notations of the introduction. Let B be the definite quater- 
nion algebra ramified at the primes dividing N-. Let R1, . .., Rt denote rep- 
resentatives for the isomorphism classes of the oriented Eichler orders of level 
N+ in B (see [Rob, ?1.6] and [BD1, ?1.1]). Define 

m:= z R, D- @E) Rt 

to be the free Z-module of formal Z-linear combinations of the Ri. (This is the 
module denoted by JN+,N- in [BD1].) Let 

(, ): M x M - Z 
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GROSS-ZAGIER FORMULA AND ARITHMETIC APPLICATIONS 115 

be the pairing defined by the rule (Ri, Rj) = 6ijwi, where wi is one half the 
order of RX. 

Let 0 be a fixed oriented order of K of conductor c (see [BD1, ?2.2]), with 
c prime to N. A Gross point of conductor c is an optimal embedding 

b: 0 -> Ri, 

i =1, ... ,t, preserving the orientations on 0 and Ri. Here, two Ri-valued 
embeddings are identified if they are conjugate under the natural action of 
RX. The set of the Gross points of conductor c is endowed with a natural free 
and transitive action of the group A = Pic(0) (see [BD1, ?2.3]). 

Fix a Gross point A. For g E A, write (, resp. 49 for the natural image 
of b, resp. /9 in M. Let (x be 9C X-l(g)g9 E M 0 Z[X] and let (fx be the 
element rTf (X of M 0 Of [X]* With the notations of the introduction, we have: 

THEOREM 1.1. Suppose that X is primitive. Then 

(4X,(f'x) = L(f /KIX,1) Vd. (u/2)2 . nf 

The above formula is proved in [Grl] only when N is a prime number and 
c= 1, so that X is an unramified character. One can check that the methods 
of Gross extend directly to this more general setting; see the work in progress 
[Dag]. 

2. Bad reduction of Shimura curves 

We review results on the bad reduction at p of X and Jn, due to Deligne- 
Rapop.ort, Drinfeld, Grothendieck, and Raynaud. In [Dr], Drinfeld constructs 
a model Xz of X over Z, i.e., a projective scheme over Z whose generic fiber 
is equal to X. The definition of Xz is via moduli: Xz coarsely represents the 
moduli functor which associates to a scheme S the set of isomorphism classes 
of abelian schemes of dimension 2 over S, endowed with quaternionic multi- 
plication and a suitable level N+p-structure. (The definition of the functor is 
explained in [Dr] and [Rob].) 

Consider the model X := X7 0 Zp of X over Zp. Let Xp denote the 
special fiber of X. By the work of Deligne-Rapoport [DeRa] and Katz-Mazur 
[KaMa] (see also [Rob, Ch. 4], in particular the remark at the end of the 
introduction of ?4), the following holds. Let X' be the Shimura curve denoted 
XN+,N-/P in [BD1, ?1.3]. Denote by X' its Drinfeld model over Zp, and by 
X' the special fiber at p of X'. The fiber Xp is the union of two copies of X' 
crossing transversally at the supersingular points of X'. A point on X' is called 
supersingular if it corresponds to an abelian surface over Fp together with its 
additional structure, having endomorphism ring equal to an Eichler order in a 
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116 MASSIMO BERTOLINI AND HENRI DARMON 

quaternion algebra. This order is necessarily an Eichler order of level N+ in 
the definite quaternion algebra of discriminant N-, by the work of Waterhouse 
[Wa]. By abuse of language, we call supersingular also the (ordinary) double 
points of Xp. Let s E Xp be any such point. It is defined either over Fp or over 
Fp2. Viewing s as a point on X over the ring W(Fp) of Witt vectors of Fp, we 
see that its strict localization is of the form 

W(Fp)~xAA/xy p ) 

where the "width of singularity" k = k, is > 1. The model X is regular at s if 
and only if ks is equal to 1. 

We need also consider the behaviour under base-change of X. Given a 
local field F of residue characteristic p, write R for its ring of integers. Let 
7r be a uniformizer of R, and let e be the ramification index of R over Zp. 
Consider the base change XR = X 0 R of X to R. The singularities of the 
special fiber Xr of XR correspond bijectively to the ordinary double points of 
Xp. Suppose that the strict localization of a double point of Xp is of the form 
W(Fp) ~x, yij/(xy - pk). Then the strict localization of the corresponding point 
on Xr is 

W(Fp) x, y(xy - 7 )ek 

Thus the singularities of the special fiber of XR are ordinary double points, 
corresponding to the double points of Xp, and their width gets multiplied by 
the ramification index e. 

It is important for us to have a description of the group of connected 
components of the fiber at 7r of the Neron model J over F of the jacobian of X. 
Let sl, ... , st be the supersingular points of Xir, with respective width k1,... , kt 
(relative to the uniformizer 7r). The work of Raynaud [Ray 1] relates the 
Picard scheme Pic(X) to 5. Building on this, Grothendieck [Groth] gives the 
following description of the group of connected components 1 = b= 
of the special fiber Jr of 5. There is a canonical identification 

0 =Pic0(X4 

Since the singularities of X are ordinary double points, Pic?(X), and hence , 
have semistable reduction at 7r. The character group MO of the maximal torus 
of Jr is equal to the group of degree zero divisors with Z-coefficients supported 
on Si,... , st. The work of Waterhouse (see [Wa], and [Rob, Thm. 4.2.2]) 
shows that the map sending si to its endomorphism ring Ri induces a bijection 
between the set of supersingular points and the set of oriented Eichler orders 
R1, ... , Rt introduced in the previous section. Hence MO is identified with the 
kernel of the degree map M -? 2, where M is the module of Section 1. Given 
a Z-module A, we write Av for its Z-dual Hom(A, Z). Let 

(, ): MO x M0 -+ Z 
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GROSS-ZAGIER FORMULA AND ARITHMETIC APPLICATIONS 117 

be defined as the restriction to MO of the pairing of the previous section, and 
let 

MO: M0 ,Mv 

be the induced map. One can show that the width of singularity ki is equal to 
ewi. (Recall that wi is equal to 2#(RX).) 

THEOREM 2.1 (Grothendieck). 

1. The pairing e(, ) is equal to the monodromy pairing on MO. 

2. There is a canonical identification 

4 = coker(Mo MoV? , 

where XZ is the map induced by the pairing (, 

Proof. 

1. See Grothendieck, loc. cit., Thm. 12.5, and [Ray 2, pp. 16-17]. 

2. Grothendieck, loc. cit., Thm. 11.5. 

The monodromy pairing e(, ) on Mo gives rise to a pairing 

[]: 4 x 4D - + Q/z 

(which we still call the monodromy pairing by abuse of terminology), in the fol- 
lowing way. The map eq induces an isomorphism from Mo 0Q to Hom(Mo, Q), 
which allows us to extend the pairing e(, ) to a Q-valued pairing on M'v C 

Hom(Mo, Q). The reader will check that passing to the quotient gives rise to 
a well-defined pairing on 4 = M0v/eq(MO), with values in Q/Z. 

As a corollary we obtain: 

COROLLARY 2.2. 

1. There is an exact sequence 

? 

' 
Mo Mo 4D 

>- 
M~V/?(MO) 

>_ O. 

2. Given vi and V2 in Mo, 

[IvliKv2] = -(vl,v2) (mod 7Z). 

An alternate description of 1, also based on the work of Raynaud, is given 
in [MaRa]. 

Example. Given a discrete valuation ring extension R of Zl1, with absolute 
ramification degree e, and letting 7r denote a uniformizer of R, as an example we 
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118 MASSIMO BERTOLINI AND HENRI DARMON 

compute in terms of the above description the group of connected components 
of the fiber at 7r of the modular curve X = Xo(II) = X11,. There are two 
singular points sl and S2 on X, with width of singularity ki = 2e and k2 = 3e. 
(They correspond to supersingular elliptic curves in characteristic 11, having j- 
invariant equal to 1728 and 0, respectively.) The fiber X, has two components 
C and C', crossing at s, and S2. The character group MO of the maximal torus 
is equal to 2(sl-s2). The pairing (, ) is characterized by (sl-S2, s1-s2) = 5e, 
so that 1 is a cyclic group of order 5e. 

3. Heegner points and connected components 

In this section, we describe the natural image in Ibn of the divisors of 
degree zero on X(H,) supported on the Heegner points of conductor cp'. Let 
G, be Gal(Hn/H). The group Gn is cyclic of order en. Let p be a prime of 
Hn above p, and let Xp be the fiber at p of the base change of X to the ring of 
integers of the completion of Hn at p. Let P be a Heegner point of conductor 
cpn. (Cf. [BD1, ?2.1] for the definition of these points.) 

LEMMA 3.1. The Heegner point P reduces modulo p to a supersingular 
point in Xp. 

Proof. In view of the modular interpretation of X ([Rob]), the Heegner 
point P corresponds to an abelian surface with quaternionic multiplication and 
level structure, and the ring of endomorphisms of the modulus P is equal to 
the order On of K of conductor cpn. This abelian surface is isogenous to a 
product E x E, where E is an elliptic curve whose ring of endomorphisms is 
equal to an order of K. Since p is inert in K, the curve E has supersingular 
reduction at p. The claim follows. 

Identify in the natural way the module of divisors, resp. of divisors of 
degree zero supported on the supersingular points of Xp with M, resp. Mo. 
Let Divhp, resp. Div hp denote the module of formal divisors, resp. degree zero 
divisors supported on the Heegner points of conductor cpn. 

Lemma 3.1 allows us to define a reduction map 

p: Divhp -, @DIpM 

Corollary 2.2 gives the exact sequence 

0 M ffM l'*n -- >,Dlp(M&/0(Mo)) 0, 

where by abuse of notation we denote by n also the map on fplpMo 

THEOREM 3.2. Let D be a divisor in Divohp, and let D be the natural 
image of D in 4N. Then 

D = np(D) 
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GROSS-ZAGIER FORMULA AND ARITHMETIC APPLICATIONS 119 

Proof. Given a prime p of H?I above p, let pp: Divhp -? M, resp. As: MO 
4p, denote the p-component of the map p, resp. a. Note that Ad factors as 

M0 C M - MV aid, 

where X is induced by the pairing on M defined in the previous section, and 7r 
is equal to the dual of MO C M composed with the projection of MOJ onto Ip 
determined by Theorem 2.1. Identify M with the free Z-module generated by 
the supersingular points s1,... , St of Xp, and write sv, .. ., S/for the dual basis 
of Mv relative to the standard scalar product. If pp(D) is equal to EZt=,ni 
Si, then its image qpp(D) in Mv is Et=, wini *sfS. Thus, by the formula 
(2.3) of the Appendix, Theorem 3.2 is equivalent to the equality wi = m(si), 
where the numbers m(si) are defined in Section 2 of the Appendix. Let Hp 
be the completion of H?I at p. Write HPnr for the completion of the maximal 
unramified extension of H1, R for the ring of integers of HP` , and 7rR for a 
uniformizer of R. Observe that in order to apply the results of the Appendix, 
we have to pull back our objects to R. 

Let now P be a Heegner point of conductor cp'. We first consider the case 
of modular curves. Here P corresponds to a diagram (E - - E', /3), where we 
may assume that E, resp. E' is an elliptic curve defined over H1,,- resp. HI, 
and where a: E -> E' is an isogeny of degree p and d denotes the prime-to-p 
level structure carried by P. Viewing E and E' as elliptic curves over R/pR = 
R/7r-R, we let F: E --> E(P) be the Frobenius morphism. By formula (3.3) of 
the Appendix and by the above remarks, we are reduced to showing that E(P) 
and E' are not isomorphic over R/7r2R. This is a consequence of Lubin-Tate's 
theory of formal moduli and of Gross' work on quasi-canonical liftings of formal 
groups. More precisely, let m(E') E 7rRR, resp. m(E(P)) E 7rR(R/pR) denote 
the formal modulus of E', resp. E(P), defined as in [LT, ?3]. By Proposition 5.3 
of [Gr3, part 3], ordRm(E') is equal to 1. On the other hand, since E is defined 
over H1_1 and H?I is totally ramified over H1,- we find that m(E(P)) belongs 
to 4r[H:nHn-l](R/pR). Since formal moduli classify liftings of formal groups up 
to isomorphism (see [LT, Thm. 3.1 and Prop. 3.3]), this proves Theorem 3.2 
in the case of modular curves. 

In the general case, the local study of Heegner points on Shimura curves 
reduces to similar considerations on deformations of formal groups of dimension 
one: See Section 4 of the Appendix, and in particular Proposition 4.2. This 
concludes the proof of Theorem 3.2. 

4. Proof of Theorem A 

Let ED be the free Z-module of formal linear combinations of Gross points 
of conductor c. Given a Heegner point P of conductor cp' and a prime p of H?I 
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120 MASSIMO BERTOLINI AND HENRI DARMON 

above p, the reduction modulo p of endomorphisms determines an embedding 
-,n > Ri, where Ri is one of the Eichler orders above. This embedding extends 

to an embedding b: 0 -> Ri, since there are no optimal embeddings of orders 
of conductor divisible by p into the Ri (cf. [BD1, Lemma 2.1]). 

PROPOSITION 4.1. The embedding b: 0 -- Ri is optimal. 

Proof. Let P., E X(Hi) be the Heegner point such that the divisors 
Up"lP., and NormHn/H1P on X are equal. (See the discussion in [BD1, ?2.4].) 
Let P' E X'(H) be the image of P. by the natural projection. (Recall that 
X' is the Shimura curve introduced in ?2.) Note that P' has endomorphism 
ring 0, and the embedding b is equal to the reduction modulo p of the en- 
domorphisms of P'. It is a consequence of [GZ, Proposition 7.3] that b is 
optimal. D 

Proposition 4.1 allows us to define a map 

st: D iv hp __ 
ffpI Id. 

We define the action of the Galois group A on (DppID by permutation of the 
summands: JfplpD:= Ind/ )(ID) as a A-module. With this definition, note that 
I is A-equivariant. Recall also from Section 1 that A acts on ED. We may 
extend this action diagonally to hypeID. 

LEMMA 4.2. The two actions of A on (DplpD agree on Im(T). 

Proof. Fix a prime p of H above p, and let At: Divhp -? ID be the natural 
map obtained by composing ' with the projection on the component at p. 
With P' as in the proof of Proposition 4.1, the claim amounts to showing that 
for all a in A 

qt ((P ) ) = at (P ) , 

where the action of A on the right-hand side is the one considered in Section 1. 
Let s E M be the reduction modulo p of P', so that Tp1(P') corresponds to the 
reduction modulo p of endomorphisms 

A: End(P') -> End(s). 

Let a be the element of Pic(O) representing a' such that 

a = Hom((P') , P'). 

It follows from Proposition 7.3 of [GZ] that Hom(s', s) is equal to End(s)a, 
where we let s' denote the reduction modulo p of (P')'. Observe that End(s') 
is the right order of Hom(s', s), so that reduction modulo p of endomorphisms 
gives rise to an optimal embedding 

' I: = End((P')f) - R' = End(s'). 
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But 4' is equal to O' by definition; see [GrI, p. 134]. 

Let w) be the natural map from G,,peID to fflpM. Then we have a natural 
commutative diagram of Galois and Hecke equivariant maps 

Divhp P > ,IM 

(*) 49 =1 
w 

-hlpp 
, 

fllM. 

By tensoring with Of [X], we extend n to a map from fflpMo X Of [X] to 4bJfx 0 

Of [X], and denote it by the same symbol. 

Proof of Theorem A. Noting that WN acts as -1 on f ([BD1, ?1.8 and 
2.8]), so that WNrif =-f, we have the chain of equalities 

[&nn X]n [KP f((Pn) - (WNPn))X, v P((Pn) - (WNPn ))f x]n (by Thm. 3.2) 
4 - ((PPn)X, (PPn) fX) (by Cor. 2.2) 
n 
4 
(W (qPn)X, W (qPn)fX) (by the commutative diagram (*)) 

en 

1 L(f/K ) X d )d.u2.-nf (mod Of([X]), 
en (f If) 

where the last equality follows from Theorem 1.1. 

Remark. We may combine the formulae of Theorem A corresponding to 
the various n in a single statement. Let 

4Ax:= lim4n, 
n 

where the inverse limit is with respect to the maps of multiplication by p. By 
Theorem 2.1, there is a surjection (which is well-defined up to sign) from Io 
to (N 0pMv p. The monodromy pairings [, In give rise to a canonical pairing 

[~0 4D C0o X0 xD C0 -,- zP. 

Denote by iaLf the natural image in Ibc of the norm-compatible sequence of 
Heegner divisors (af). Then, Theorem A can be restated as follows: 

THEOREM 4.3. Suppose that X is a primitive character of A. Then we 
have the equality in Of [Xl 

[f,x fx L(f /KjX:1) Vd. U2 2 lao Iao 10 - (f if) * flf 
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5. A rigid analytic Gross-Zagier formula 

In [BD1], we formulate conjectures for elliptic curves with values in anti- 
cyclotomic towers, which are analogues of the conjectures of Mazur, Tate and 
Teitelbaum for the cyclotomic ZP-extension of Q [MTT], and which contain new 
arithmetic features that have no counterpart in the setting of [MTT]. Here we 
point out that the results contained in this paper give a proof of an important 
special case of our conjectures, precisely Conjecture 5.5 of subsection 5.2. 

Suppose that c= 1 and that f has rational Fourier coefficients, so that it 
corresponds to an isogeny class of elliptic curves defined over Q. Any E in this 
isogeny class has multiplicative reduction at our fixed prime p (which is inert 
in K). By the Jacquet-Langlands correspondence there are maps 

7rE*: J-? E, irk: E-?> J 

(cf. [BD1, ?1.9]). Here the map 7r* is the dual of the Shimura curve parametriza- 
tion 7rE*. We assume that irE* has connected kernel, or equivalently that 7r* 
is injective. We define the degree of 7rE* to be the positive integer dX corre- 
sponding to the endomorphism 7rE* 07r* of E. There is also a classical modular 
curve parametrization of minimal degree dx0(N) from Xo(N) to the strong Weil 
curve E' in the isogeny class of E. Let 6x be the ratio dx/dxo(N), and let Q 
be the complex period associated to E'. 

Since p is inert in K, the curve E/Kp has split multiplicative reduction. 
Let 

?n = @plp t, 
be the group of connected components at p of the Neron model of E over 
Hn. By Tate's theory, 4DE is isomorphic (up to sign) to Z/encpZ, where cp 
ordp(qE). Let Hn~p stand for Hn 0 Qp. Define 

E (Hoo p) : lim E(Hn~p) E := lmni 
n n 

where the inverse limits are taken with respect to the norm and the multipli- 
cation by p maps respectively. Note that there is a surjection from IE to 7Z, 
which induces a map 

AqE E(H, P) -+ZP 
by specializing to the group of connected components. 

Let Yn 7= TE*(a2n) E E(Hn). The Heegner points Yn are norm-compatible 
and, by [BD1, ?2.5], NormHn/KYn = 0. The reader should think of AqE((yn)) 

as the leading coefficient of the p-adic L-function associated to the sequence 
(Yn)- (See [BD1, ?2.7] for more details.) 

THEOREM 5.1. Assume that E is isolated in its isogeny class (so that 
E= E'). We have 

(Y)2= L(EK11)4 u2 6X .C 
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Proof. The group pE is equipped with the monodromy pairing 

[ E,n: 4Dn X 4DE __ ?2/Z, 

whose pth component [, ]E, is characterized by [1, 1]E, = eEc. Let 

7rE*: 4Dn- bn 

be the map on connected components induced by 7TE*. Write 1 for the trivial 
character of i\. The number AqE((Yn))2 is equal to [LrE*Ot 7rE*a1]En* (enCp) 
modulo en. Hence 

cpen AqE ((Yn) - E*a E* n]En =an, IFEIFE*Oan]nl- 

Observe that TETE* is equal to dx7rf acting on 4n. This can be seen by noting 
that 7rE7rE* is necessarily an integer multiple of 7rf, and 

(7r*7rE*)2 = dx7r* 7rE*. 

Define now rf to be dx7rf, so that nf = dx. Then by Theorem A, 

Ce 7r 7r C _e 
1 L(f/IKI l) V 2d 

an: Ce(n~= [n: Ctn en Ul(f ) (mod E). 

Using the fact that (f f) is equal to dx0(N)Q, we find 

AqE ((Yn )2 = L(E/K,1) . 2 8X . v 

as was to be shown. D1 

Remarks. 1. The formula of Theorem 5.1 may be seen as an analogue of 
the formula of Gross-Zagier, in the rigid analytic setting, and of the theorem 
of Greenberg-Stevens [GS], in the anticyclotomic setting. 

2. Theorem A shows that the sequence of Heegner points (Yn) maps non- 
trivially to the group of connected components JOO precisely when L(E/K, 1) 
is nonzero. On the other hand, it is always easy to construct norm compatible 
sequences of local points on E whose norm to Kp is equal to zero, and whose 
image in JOO is nontrivial. This follows from the fact that the period qE is a 
local universal norm in the anticyclotomic Zp-extension of Kp. 

3. The classical Birch and Swinnerton-Dyer conjecture predicts that 

L(F/K 1) = #x (E/K) 
fI Ce2 fI ce (#(E(K)tors)2 . d (u/2)2)1, 

ijN+ ejN- 

where ce is the number of connected components of the fiber at f of the Neron 
model of E over Q. Combining this with Theorem 5.1 suggests that 

(6x)1= fi ce (mod (?QX)2) 
el(N-/p) 
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It would be interesting to investigate when this equality holds not just up to 
squares. In this connection, see the forthcoming work of Ribet and Takahashi 
[RT]. 

6. Kolyvagin cohomology classes 

Let A denote the abelian variety Af of the introduction. We construct 
cohomology classes in H1 (H, Aen,) from Heegner points on X defined over ring- 
class field extensions of Hn, and we study their ramification properties. These 
classes will be used in the next section to bound the Mordell-Weil group A(H). 

Preliminaries. If L is a number field, we write GL for its absolute Galois 
group, and GM/L for the Galois group of a finite Galois field extension M/L. 
We denote by Frobe(M/L) the Frobenius element attached to a prime f of L 
which is unramified in M. It is a well-defined conjugacy class in GM/L. 

From now on we let 7F denote the algebra generated by the Hecke operators 
acting on A. The map ofq of the introduction induces an isomorphism of T onto 
the ring Of generated over Z by the Fourier coefficients of f. We will write 
Te to denote the image of the ?th Hecke operator in 7r. The ring 7F need not 
be integrally closed: let IF be the integral closure of 7F in its fraction field, and 
let t be the exponent of 7F in tr. The adelic Tate module T(A) := lim Am is 

m 
endowed with a natural action of GQ, and T(A) 0T IF is free of rank 2 over 
IF 0^. Choosing a basis gives Galois representations 

P: GQ - GL2(7 &FZ), and Pm: GQ - GL2(7r/tm7r), 

for all positive integers m. Let Fm denote the smallest field extension of H 
through which Pm factors. Note that Am is defined over Fm. 

Given a square-free product t = II f of primes f such that (cp, ?) = 1, let 
Hn [t] denote the compositum of Hn with the ring-class field K[t] of conductor t. 
Write gt for Gal(Hn[t]/Hn) and 9t for Gal(Hn[t]/H). Thus we have canonical 
identifications gt = Gn x gt and gt = 1l} gA 

Definition. A prime f is a Kolyvagin prime (relative to n) if f does not 
divide 2c(p + 1)N, and satisfies 

Frobj(Fen/Q) = [T], 

where T denotes a fixed complex conjugation in GQ. 

Let f be a Kolyvagin prime relative to n. Then, the group 5; is cyclic of 
order t + 1. 

LEMMA 6.1. If f is a Kolyvagin prime relative to n, then Te belongs to 
en7 and f + 1 is divisible by en 
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Proof. By the Eichler-Shimura relation, the characteristic polynomial of 
Pen (Frobe) is equal to x2 - Tex + T. The characteristic polynomial of Pen (T) is 
equal to x2 - 1. It follows that f + 1 is divisible by ten, and the image of Te in 
IF 0 Z is divisible by ten, so that Te belongs to enTI. D 

Fix a generator a, resp. of for Gn, resp. gf, and write Norm, resp. Norme, 
for the associated norm operators. Define Kolyvagin's derivative operators 

en-1 

D =ZIicr, De =ZFict. 
i=l i=1 

The following equations hold: 

(1) (a-I)D = en-Norm, (a - 1)Di = (? + 1) -Norme. 

Given a square-free product t of Kolyvagin primes, let Dt E Z[9t], resp. Dt E 
Z[9t] stand for rin Di, resp. D flf Di. When t = 1 is the empty product, we 
mean that Dt is equal to D. 

For all the t as before, the results of [BD1, ?2.5] allow us to define Heegner 
points aon(t) E A(Hn[t]) satisfying the relations 

(2) Norm(an(t)) = 0, Normj(an(t)) = Tean(t/f). 

Let an denote the Heegner point corresponding to the empty product. (The 
point an is the image in A of the Heegner point an of the previous sections.) 

Let 4,A resp. DAt be the group of connected components at p of the Neron 
model of A over Hn, resp. Hn[t]. Since the primes of Hn over p are unramified 
in Hn[t], we have (4DAj)t = DA . Let Dtdn(t) be the image of Dtcen(t) in 4At. 

LEMMA 6.2. 1. The natural image Qn(t) of Dtan(t) in (A(Hn[t])/en 
A(Hn [t])) is fixed by gt. 

2. The element Dtdn(t) belongs to DA. 

Proof. Part 1 follows from equations (1) and (2), combined with Lemma 
6.1. To prove part 2, it is enough to show that Dtocn(t) is fixed by gt. Let f 
be a prime dividing t. Then we have 

(ai - 1)Dt-n (t) = (V + i)Dt-n (t) - Dtatn(t/) 

Since Norm acts as multiplication by en on 4JA and kills an(t) and an(t/4), 
we find that on(t) and an(t/f) belong to (An~t)en. The result follows from 
Lemma 6.1. 

LEMMA 6.3. The order of the group A(Hn[tl)tors is bounded indepen- 
dently of n and t. 

Proof. Choose two primes qi and q2 which are inert in K and do not 
divide N. The residue field of Hn [t] at any prime above qi is Fq2, and likewise 
for q2. Since A(Hn[tl)tors injects in A(]Fq2) e A(]Fq2), the claim follows. 
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In view of Lemma 6.3, define an absolute integer constant a which annihi- 
lates Aen (Hn [t]) for all n and t, and the groups 4Ie] of connected components 
at f of A/Q, for all primes f which divide N and are split in K. 

Construction of the Kolyvagin classes. Recall the en-descent exact se- 
quence over Hn[t]: 

o -- A(Hn[t])/enA(Hn[t]) ) H1 (Hnr[t],Aen) -- H1 (Hn [t],A)en -?0, 

and let cn(t)00 = -6Qn(t) be the natural image of -Dtan(t) in H1 (HnI[t], Aen). 
By Lemma 6.2, the class Cn (t)00 belongs to H1 (Hn I[t], Aen ). The Hochschild- 
Serre spectral sequence HW (9t Hi (Hn [t], Aen)) = H'+j (H, Aen) gives rise to 
the exact sequence (inflation-restriction): 

H1(5 Aen (Hn [t] ) )nf H1 (HI Aen ) 
rs 

H1(Hn[t], Aen)-t - H2(9t, Aen(Hn[tl)). 

Hence there exists a class cn(t)0 in H1(H, Aen) such that res(cn(t)0) = acn(t)00. 
This class is well defined in H1 (H, Aen), modulo the image of the inflation map. 
Thus the class cn(t) = acn(t)0 is well defined in H1(H, Aen). 

We call the class cn (t) E H1 (H, Aen) the Kolyvagin cohomology class as- 
sociated to n and to the product t of Kolyvagin primes (relative to n). The 
class cn(l) corresponding to the empty product t = 1 will also be denoted by 
cn. The remainder of this section is devoted to a study of the Kolyvagin classes 
Cn (t) 

Explicit description of cn(t). We will have use for the following explicit 
formula for the class cn(t). Let [Dtl0(t)] be a (fixed) point in A(H) such that 

en[D(t)] = Dtan(t). For all -y E GH, the point (-y - 1)Dtan(t) belongs to 

enA(Hn[t]) by Lemma 6.2. Let (Y-1)bDtan(t) be a point in A(Hn[t]) such that 

en (Y-1)etan(t) = (-y 1 )Dtan(t). This point is well defined modulo Aen(H,[tl), 
and hence the point a (Y-1)Dtctn(t) is uniquely defined. Define a cochain cn(t)' 
with values in Aen by the formula 

c(t)/ ) - )[Dt(t) 1+ - (-1-) Dt n(t) 
Cn(t)Qy) = -a(-y - 1) + a 

[en en 
The cochain cn(t)' is not a cocycle in general. One checks, however, that 
its coboundary dcn(t)'AQy,y2) = cn(t)'(-ft 2) - (cn(t)AQy1) +YiCn (t)'(Q2)) takes 
values in Aen(Hn[t]), so that the class acn(t)' is a cocycle. As McCallum [McC] 
has remarked, we have: 

LEMMA 6.4. The Kolyvagin class cn(t) is represented by the cocycle 
acn (t)' 
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Proof. A direct computation. 

Action of complex conjugation. Define a sign w to be -1 if A/Qp has split 
multiplicative reduction, and to be +1 if A/Qp has nonsplit multiplicative 
reduction. 

PROPOSITION 6.5. There exists -y E A such that Tcn(t) = (-i)#{it}w 
IYCn M) * 

Proof. By [BD1, Prop. 2.5], we have Tan(t) = -w-y'an(t), for some ele- 
ment -y' of Gal(Hn[t]/K). Using equation (2) and Lemma 6.1, we see that a 
direct calculation proves the claim. (See [Gr2, Prop. 5.4].) 

Descent Modules. Given a rational prime f and a number field F, we let 
Fe be DXAjeFX, where the sum is taken over the primes A of F above f and FAx 
denotes the completion of F at A. We extend additively functors defined on 
finite extensions of Qe. Thus, for instance, H1(He, A) : AXjeH1(HA, A), etc. 

Recall the descent exact sequence: 

0 -? A(H)/enA(H) -? H1(HIAen) -? H1 (HA)en -0 . 

For each prime f of K there is also a corresponding exact sequence of local 
cohomology groups, obtained by replacing H by He. Both of these sequences 
respect the natural actions of the Hecke algebra 7F and the Galois group A. 

Let W C H1(HAen) be the image of A(H)/enA(H), and let X = 
H1(HA)en be the cokernel. Denote by We and Xe the local counterparts 
of these groups, for each prime t. 

We will need an explicit description of the modules We and Xe, at least 
when f is a Kolyvagin prime relative to n and when f = p. 

LEMMA 6.6. Suppose that t is a Kolyvagin prime. Then there is a 
canonical A and 7-equivariant isomorphism 

bPe: Xe -? Hom(ge,We). 

Proof. Let H nr - eX1,Hiunr be the maximal unramifield extension of He. 
Since f is a Kolyvagin prime, we have by the inflation-restriction sequence 

Xe = H1(H nrI Ae )Frobf 

Hom(Gal(He/Hjunr), Aen )ob - Hom(g, Ae (He)) 

Finally, we identify Aen(He) = (EXjeAen(HA) with We = (EXjeA(HA)/enA(HA) 
via the map e3Xje((f + 1)FrobA(H/Q) - Te)/en. See [Gr2] for more details. 

Note that the proof of Lemma 6.6 shows that the I[ZA]-modules Xe and 
We are both isomorphic to Aen (He) = IndA Aen' (1) e 
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We now turn to f = p. Let Yp denote H1(Gn1A(Hnrp))en, identified by 
inflation with a submodule of Xp. 

LEMMA 6.7. There is a canonical z and 7-equivariant injection 

bp: Yp --- Hom(Gn @n) 

Proof. The Mumford-Tate theory of p-adic uniformization gives rise to an 
exact sequence 

0 -? Un 0 (MoA)V - A(Hn,) -?A ___ 0, 

where UHn p is the group of units in HX and MA is the character group of A 
at p. Taking Gn-cohomology yields 

0 * 4DA _> 4?A - H1 (Gn, Uln p 
0 (MA)v) - Yp - Hom(Gn, 4nA), 

where J?A denotes the group of connected components of A over Hp. The 
Gn-cohomology of the natural sequence 

0 0 UHnP ( (MO TV & (MO)V d (MA)V 

shows that H1 (Gn, UHn 0p (MA)v) is isomorphic to (Z/en )dim(A). Hence bp 
is injective. 

Residues and duality. Let ( be a global cohomology class in H1 (H, Aen) 
If f is a rational prime, the residue at f of (, denoted &ej, is defined to be the 
natural image of ( in Xe. If iej is zero, then the image of ( in H1(He, Aen) 
belongs to We. We denote by vet this image, which we call the value of ( at T. 

The class ( has only finitely many nontrivial residues, since it is unramified 
for almost all primes. Define the support Supp(Q) of ( to be the set of primes 
of Q at which ( has nontrivial residue. 

Choose a polarization of A, i.e., a Q-isogeny from A to its dual abelian va- 
riety AV. This choice combined with the canonical nondegenerate Weil pairing 
Aen 0 n An + uen gives rise to a pairing Aen 0 Aen -en AVev, whose left and right 
radical have order bounded independently of n. The cup product followed 
by this modified Weil pairing gives a symmetric Galois and Hecke-equivariant 
local Tate pairing 

( ): H 1 (Hit. Aen ) x H 1 (Hit. Aen ) -- H2 (H.en ) e Z/enZ, 

where inve denotes the sum of the invariants at the primes dividing f ([Mi]). 
By results of Tate, the radical of ( , )e has order bounded independently of 
n. The submodule We is isotropic for (, ), and hence the local Tate pairing 
gives rise to 

( , )e: We x Xe -? /enZ, 

which by abuse of notation we denote in the same way. 
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The following reciprocity law of Poitou and Tate is fundamental. 

PROPOSITION 6.8 (Global reciprocity). Suppose that '1 and '2 are global 
classes in H1(HAen) with disjoint support. Then we have: 

E (vi1,&K2)i = - E (Vi62,1K1)e 
icSupp(Q2) icSupp(Wi) 

Proof. By the formula for the local Tate pairing we have (vil, &eK2)= 

inve((, U 62), for all f in the support of 62, and likewise for '1. Hence 

E (Vi61, 192)i + E (Vi6,&9K1) Z 
inVe(& U 62) 

icSupp(42) icSupp(Wl) 

The last sum is 0, by the global reciprocity law of class field theory ([Mi]). C 

Local behaviour of the Kolyvagin classes. We turn to the behaviour of the 
classes cn(t) under localization. It might help the reader already familiar with 
Kolyvagin's theory to notice that the classes cn(t) differ from the cohomology 
classes considered by Kolyvagin (see for example [Gr2]) for the fact that they 
may be nontrivial not only at tamely ramified (Kolyvagin) primes, but also at 
the wildly ramified prime p. 

PROPOSITION 6.9. 

1. If f does not divide pt, then atcn(t) = 0. 

2. If f divides t, then: 

(a) (Induction formula). 'Of(19fcn(t))(9f) = VfCn(t/f). 

(b) (Orthogonality relation). (vfT?[A1]cn(t/f )09&cn(t))> = 0. 

3. The residue apcn(t) belongs to Yp, and 

)p (apCn (t) ) (a) = a2Dtan (t), 

where Dtacn(t) denotes the image of Dtan(t) in 4AnA 

Proof. 
1. Observe that the extension Hn[t]/H is unramified outside pt. Then, 

by [Mal, Prop. 4.3], the group H1(Gal((Hn[t])e/Ht), A((Hn[t])e)) is naturally 
isomorphic to H1(Gal(F(H.[t]),/ FH~), JA]). If f is a prime of good reduction for 
A, then 4)A is trivial, and hence &tcn(t) = 0. If f is inert in K, then Hn[t]/H 
has trivial residue field extension at /, and thus cn(t) restricts to zero at /. 

Finally, if f splits in K and divides N, then our choice of a guarantees that 
atcn(t) = 0. 
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2. By the explicit description of cn(t), and the description of Xe given in 
the proof of Lemma 6.6, we have the equality 

19 Cn (t) (Ce) = a2 (oa - 1)DtA a(t) 
en 

in Aen(He). Equations (1) and (2) yield 

(oe - 1)Dtan(t) (f + 1)bDt/~en(t) - Dtitien (t/f) 
en e n 

Part (a) now follows from the description of the map 4e given in Proposi- 
tion 6.6, and the congruence 

an(t) _ FrobA/(Hn[t]/Q)an(t/f) (mod A') 

for all primes A' of Hn[t] above T. (The above congruence is a consequence of 
equation (2), combined with the Eichler-Shimura relation. See [Gr2, Prop. 3.7 
and 6.2] for more details.) 

The proof of (b) in a special case is contained in Proposition 3.6(b) of 
[B2]. The general case is proved along similar lines. 

3. It follows from Lemma 6.4, combined with equation (1). 

Given a character X: A -- Z[x] X, let [X] be the Galois orbit of X, and 
define the operator e[X] E Z[A] to be e[X] :_ ExW[xj exa. Let V be a Z[A]- 
module. Unlike the previous sections, we now define VX := e[X] V. It is a E[A]- 
submodule of V. The action of the group ring Z[A] on VX factors through the 
map Z[A] -- Z[x] induced by X. In this way, VX can and will be viewed as 
a Z[x]-module. Suppose in addition that V is a Z[GH/Q1-module. Then the 
complex conjugation r acts on VX and this action is skew-linear with respect 
to the action of Z[X], i.e., Trav = aTrv for all v E VX and a E Z[X]. Let VX?' 
be the ?-eigenspace for r acting on VX. 

Let cn(t)X be the class e[x]cn (t) in H1(H, Aen)X. 

PROPOSITION 6.10. If L(A/KX,1) + 0, then the 7F[x]-submodule of ?PX 
generated by 9p cX has index bounded independently of n. 

Proof. Since L(A/K, X, 1) is nonzero, then L(f /K, X, 1) is nonzero for 
all the Galois conjugate forms f' of f. Proposition 6.10 follows from Theorem 
A combined with part 3 of Proposition 6.9. 

7. Bounding Mordell-Weil groups 

Assuming that L(A/K, X, 1) + 0, we show in this section that the image 
of A(H)/pnA(H) in H1(H, Apn)X is bounded independently of n, thus proving 
Theorem B. 
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We will make a shift in notation, letting WX, resp. XX be 
(A(H)/pnA(H))X, resp. H1(H, A)pxn, and likewise for their local counterparts 
Wjx and XX. Moreover, we replace the class cn(t) defined in Section 6 with its 
natural image in H1 (H, Apn) ) 

Given a Z[X]-module V, let Vdual be the Pontryagin dual Hom(V, Q/Z) of 
V, viewed as a E[x]-module via the rule a(f (v)) = f (av) for all a E SZX] and 
v in V. Consider the natural map 

En: WX -? (yX)dual 

equal to the composite map Wx Vp (X)dual (y9X)dual, where the 
second map is induced by the local Tate duality, and the third map is the dual 
of the natural inclusion YPX c- XPX. Our proof of Theorem B divides naturally 
in two steps: first we bound uniformly the image of in, and then its kernel. 

PROPOSITION 7. 1. The order of the image of vn is bounded independently 
of n. 

Proof. Let C be the submodule of H1(H, Apn)X generated over 7E[X] by the 
Kolyvagin class cX. Let P be a point of WX. By Proposition 6.9, the classes in 
C have support only above p, and by definition P has empty support. Hence 
by Proposition 6.8, we have 

(vPP,x)P = O Vx EP(C). 

By Proposition 6.10, the index of &~p(C) in YPX is bounded independently of n. 
The result follows. 

Recall that w is the sign defined in Section 6. 

COROLLARY 7.2. Suppose that X = X. Then A(H)XW is finite. 

Proof. When X = X the module YPX is identified with a submodule of 
X7Xw, whose index in XpXw is bounded independently of n. Since vn is r- 
equivariant, Proposition 7.1 shows that the map WX7 (xXvw)dual induced 
by vn has image bounded independently of n. Hence, by the r-equivariance of 
the local Tate duality, the natural image of A(H)X W in A(Hp)XW X7Zp is finite. 
Since the natural map A(H)X W -+ A(Hp)X W 0 7p has finite kernel, the claim 
follows. 

It is worth recording the following consequence of Corollary 7.2. 

THEOREM 7.3. Let E be a semistable elliptic curve, having a prime p of 
nonsplit multiplicative reduction. If L(E/Q,1) is nonzero, then E(Q) is finite. 

Proof. By [Wi] and [TW], E is modular. One chooses an auxiliary imag- 
inary quadratic field K such that p is inert in K and L(E/K, 1) is nonzero. 
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This is possible by a theorem of Waldspurger [Wald]. In this case, the sign w 
is 1 and E(H)l w - E(Q) is finite by Corollary 7.2. 

Remark. Note that the proofs of Proposition 7.1, Corollary 7.2 and Theo- 
rem 7.3 do not use the Kolyvagin primes X, but only the wildly ramified prime 
p. Bounding the kernel of En requires a more involved argument, based on the 
use of Kolyvagin primes and the Chebotarev density theorem. 

Preliminaries. We begin with proving two lemmas, which are used to es- 
tablish the important technical Proposition 7.6, stating that a global cohomol- 
ogy class is essentially determined by its restriction at the Kolyvagin primes. 
The key ingredient in the proof of Proposition 7.6 is the Chebotarev density 
theorem. 

From now on we denote the field Fn defined in the previous section by F. 
Recall that Apn is defined over F. 

LEMMA 7.4. The order of H1(GF/HApn) divides an integer bl indepen- 
dent of n. 

Proof. This is proved in [KL, Prop. 5.10] along the following lines. By a 
result of Serre [Se], the image II of the Galois representation ppn contains a 
group Ho of scalar matrices equal to the natural image of 1 + b7ZE in T/pnT, 
where b' is a nonzero integer independent of n. The Hochschild-Serre spectral 
sequence for 1Ho < II gives the exact sequence 

0 -O H (H/H0IArn) - H (HApn) H1(H1, Apn) 

Now AprHn is contained in Ab', and H1 (H,0 Apn) is contained in A n/b Apn) so 
that the order of H1 (HI, Apn) divides the order of A2 . Since bY does not depend 
on n, the result follows upon taking b1 = #A2,. F 

LEMMA 7.5. There exists a constant b2 independent of n such that the 
following holds: 

(a) Let U be a submodule of Apn which is stable under the action of GF/H. 
Then we can find u E U+ so that b2 annihilates the quotient U/Z[GF/HIu. 

(b) Let U be a submodule of Hom11(T1[X]2,Apn) which is stable under the action 
of ZE[X] [GF/HI Then we can find u E U+ so that b2 annihilates the 
quotient U/Z[X][GF/H]U. 

Proof. 
(a) By replacing U by its pre-image under the natural projection Tu(A) 

Apn, where Tp(A) denotes the p-adic Tate module of A, we are reduced to 
proving the claim for a submodule U of Tp(A), which is stable under the 
action of Zp[GH]. 
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The Galois group GH acts naturally on Tp(A): Let R be the image of the 
group ring Zp[GH] in End(Tp(A)). By a result of Serre [Se], R has finite index 
in End(Tp(A)). Let ? be as before the integral closure of ?7 in its fraction field. 
Note that Tp(A) O ?7 is isomorphic to (T ? ZP)2. Since T has finite index in 7, 
the natural inclusion of R in End(Tp(A)) 0 ? -_ M2(?7 X ?p) has finite cokernel 
of order independent of n: let b2 E 7p be an annihilator. 

Let U be M2(7 0 Zp)U, viewed as a submodule of Tp(A) OT T. Then b2 
annihilates U/U, and U = M2(7 0 ZEp)u4, for u- E U+. Defining u to be b2u 
concludes the proof of part (a). 

(b) As before, we may replace U by its pre-image in Homir(T7[x]2, Tp(A)). 
Let U be M2(?7 0 Zp)U, viewed as a submodule of 

Homir(T7[x]2, Tp(A)) Ori t - Homt(t?[X]2, t2) 0 Zp. 

The last module is identified with (720Zp[X]1V)e(?720p[x]V) _ 72E7-2, where 
T is the ring t 07/p [X], and the action of M2 (T) on T2 is by left multiplication, 
viewing T2 as column vectors. Note that T is a semilocal principal ideal ring, 
equal to the product of discrete valuation rings which are finite extensions of 
Zp. By working component by component, we may, and will from now on, 
assume that T is a discrete valuation ring. Projection onto the second factor 
gives an exact sequence of M2(T)-modules 

O-? U' - U - U" -O 0. 

The modules U' and U" are either zero or isomorphic to T2 as M2 (T)-modules. 
If U" is zero, then U = U'. Assume that U" is nonzero, and let ((, ) be an 
element of U such that q generates U" as an M2(T)-module. If the vectors 
( and q are not multiples of each other by an element of T 0 Q, we may 
find a matrix A G M2(T) such that A(Qv1) = (0,r1). Thus, M2(T)(0<i}) is a 
submodule of U isomorphic to U". If ( and q are proportional by an element 
of T 0 Q, the submodule M2(T)((, i) is isomorphic to U". In all cases, we 
have 

U= U' U" 

as M2(T)-modules. A direct computation now shows that U is generated over 
M2(T) by an element of U+. The result follows as in the proof of part (a). 

Let b denote the integer (independent of n) bl#(?7[x]/2b2?7[x])2. 

PROPOSITION 7.6. Let ,1 and 62 be cohomology classes in H1 (HApn)X , 
and let C be the T[X] -module they generate. Assume that C is stable uunder the 
action of T, and, if X = -, suppose further that &, and 42 belong to different 
eigenspaces for the action of T. Then there exist infinitely many Kolyvagin 
primes t such that aOSl = aK2 = 0 and such that the order of the kernel of the 
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natural map 
vi: C -+ W 

divides the constant b. 

Proof. It is convenient to treat the case when X = X separately from the 
case when X # 

Suppose first that X =, so that 41 and 62 belong to different eigenspaces 
for T. This enables us to prove the Proposition for the TF-modules generated 
by 4, and 62, considered one at a time. Let ( E H1(H, Apn)X be one of the 
cohomology classes 4, and 62, and let c' E Hom(GF, Apn)X be its natural 
image by restriction. Call Lf the Galois extension of F cut out by (', and 
Us = Gal(L(F) its Galois group. The map c' is a Z[GF/H]-equivariant ho- 
momorphism, and it identifies Uf with a submodule of Apr. Let u be the 
element of U+ produced by Lemma 7.5 (a) applied to the module Up. By the 
Chebotarev density theorem, there exist infinitely many primes f such that 

Frobt(L/Q) = [Tu]. 

Observe that f is a Kolyvagin prime relative to n, and that 

Frob~(L/K)= [TuTu] = [u2]. 

If an element So of TF~ is in the kernel of the map ve, then its restriction A' 
to GF satisfies p'(FrobA(L/F)) = 0 for all primes A of F above X, and hence 
vanishes on Z[GF/H]U2. The claim when x - now follows from Lemma 7.4 
and the choice of u. 

Suppose that X 4 X. Let C be the module generated over Tr[X] by the 
classes 4, and 62, and let C' C Hom(GF, Apn) be the natural restriction of C. 
Let L be the extension cut out by C', and let U = GL/F Consider the left and 
right nondegenerate Kummer pairing 

( , ): C' x U - Apn. 

The modules appearing in this pairing are each endowed with various structures 
coming from the natural action of GF/K and from Hecke operators. More 
precisely, C' is a ?7[x]-module; the module U is a module over Z[X] [GF/H]; and 
Apn is equipped with a natural action of T[GF/H]. The pairing (, ) obeys the 
following compatibilities with respect to these actions: 

(1) (Tc, u) =T(c, u), for all T E T. 
(2) (c, gu) g (c, u), for all g E GF/H. 
(3) (ac, u) (c, d-u), for all a c Z[X]. 

Hence the Kummer pairing induces an injection of Z[x][GF/H]-modules 

U 3-* Homr (C', Apn) - 3 Homr (T [X] 2, Apn) . 
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The last injection is induced by our choice of the two ?7[X]-module generators of 
C' coming from 4, and 42. Let u be the element of U+ produced by Lemma 7.5 
(b) applied to the module U. By the Chebotarev density theorem, there exist 
infinitely many primes f such that 

Frob~(L~/Q) = [-Fu]. 

Observe that f is a Kolyvagin prime relative to n. The reader will check as in 
the case X = 

- that the kernel of the map from C to Wt has order dividing b. 

PROPOSITION 7.7. The order of the kernel of vn is bounded independently 
of n. 

Proof. Let P be an element in ker(vn). Let C be the submodule of 
H1(HApn)x generated over N[X] by P and the Kolyvagin class cX. Observe 
that if X is a quadratic character, P and cX belong to different eigenspaces 
for the action of T. Choose a Kolyvagin prime f satisfying the conclusion of 
Proposition 7.6 applied to our module C. By Kolyvagin's induction formula of 
Proposition 6.9 and our choice of X, combined with Proposition 6.10, it follows 
that the ratio of the orders of Tr[x]OAcn(t)x and YPX is bounded independently 
of n. Since apcn(f)X belongs to YPX and P belongs to ker(vn), it follows that 
(vpP, ap(T1[x]cn(t)X))p = 0. Hence, by Proposition 6.8 we have 

(vtP, t(9lr[X]cn(W)x)) = 0- 

By the Kolyvagin orthogonality relation of Proposition 6.9, 

(vcx, a(Tr[X]cn(W))> - 0- 

Since by our choice of f the orders of T[x]vecx and YPX differ by an integer 
independent of n, the claim follows from a counting argument. 

The proof of Theorem B now follows by combining Proposition 7.1 and 
7.7. 

Remark. (Suppose for simplicity that A is an elliptic curve.) If the sign 
of the functional equation of L(A/K,x,.s) is -1, then one can construct a 
canonical Heegner point in A(H)X, and it is expected that this point has infinite 
order precisely when L'(A/K, X, 1) 74 0. Assuming this, it is shown in [BD2] 
that the rank over Z[x] of A(H)X is equal to 1. The methods of [BD2] build 
directly on the fundamental ideas of Kolyvagin, which were used in [Ko] to 
handle the case X= -X 
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8. Mordell-Weil groups in anticyclotomic towers 

In this section, we prove that the Mordell-Weil group of A over very gen- 
eral anticyclotomic towers is finitely generated, under the assumption that 
"generically" A has analytic rank equal to zero. The precursor of this kind of 
investigations is Mazur's conjecture stating that A(Q?,) is finitely generated, 
Q,, being the cyclotomic Zp-extension of Q. A proof of this conjecture, based 
on the use of cohomology classes made from Steinberg symbols of modular 
units, has been announced by K. Kato [K]. 

As before, let K be an imaginary quadratic field such that L(A/K, s) 
vanishes to even order at s = 1. Fix primes f1,... , {k of good reduction for A, 
and let K,, denote the compositum of all the ring-class field extensions of K of 
conductor of the form {1 . 4k, where ni,.. . , nk are nonnegative integers. 
Thus the Galois group of KOO/K is equal to the product of a finite group by 
Z#l X ... X Z4. We now prove Corollary D of the introduction. 

THEOREM 8.1. Assume that L(A/K,X,1) is nonzero for all but finitely 
many finite order characters X of Gal(K,,/K). Then the Mordell- Weil group 
A(K,,) is finitely generated. 

Proof. Given X factoring through a finite extension H of K and such that 
the special value L(A/K, X, 1) is nonzero, Theorem B shows that A(H)X is 
finite. This implies that rankzA(K,,) is finite. Theorem 8.1 now follows from 
Lemma 6.3. 

Remark. 
1. It is expected that the nonvanishing assumption on the L(A/K, X, 1) 

always holds in our setting. See [Rol] and [Ro2] for computations germane to 
our study. 

2. Note that it is not necessary to assume, as customary in Iwasawa 
theory, that the Ci are primes of ordinary reduction for A. 

3. Let f be a prime of good ordinary reduction for A, and let K,, be the 
anticyclotomic Zr-extension of an imaginary quadratic field K. Suppose that 
all the primes dividing N are split in K, so that the L(A/K, X, s) vanishes 
to odd order at s = 1 for all finite order characters X of Gal(K,,/K). The 
results of [Bi] (where A is an elliptic curve) show, under a mild nontrivial- 
ity assumption on a Iwasawa module built up from Heegner points, that the 
Pontryagin dual of A(K,,) 0 Q?/Zt and of Selpoc (A/K,,) has rank 1 over the 
Iwasawa algebra Ze fGal(K,,/K)]. The method of proof of these results builds 
on Kolyvagin's theory. 
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Appendix 

By BAS EDIXHOVEN 

1. Various descriptions of groups of connected components 

Let R be a complete discrete valuation ring, with fraction field K and 
algebraically closed residue field k. Let XK be a smooth, proper, geometrically 
connected curve over K. Suppose that X is a nodal model of XK over R, i.e., 
X is a proper flat R-scheme, its generic fibre is XK and the only singularities of 
the special fibre Xk are ordinary double points. We will suppose, for simplicity, 
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that the irreducible components of Xk are smooth. Let JK be the jacobian 
of XK, J the Neron model over R of JK, and J := Jk/ Jk the group of connected 
components of Jk. Let X -- X be the minimal resolution of X. We associate 
a graph C to X as follows. The set of vertices is the set C of irreducible 
components of Xk, the set of edges is the set S of singular points of Xk. The 
vertices meeting an edge x are the two irreducible components containing x. 
The elements of C are Cartier divisors on X; hence for any two of them, say 
C and C', we have an intersection number (C C'). This intersection pairing 
defines a morphism of free 2-modules: 

(1.1) a,: ZC - ZC f (C (C- C') f(C')) 

A theorem of Raynaud (see [1, Thm. 9.6/1]) says that J is canonically isomor- 
phic to the homology of the complex: 

(1.2) Z a Z- + 2 Z 

where the map "+" sends f to EC f (C). The isomorphism works as follows. 
Let P be in J(K), let D be a divisor on X such that P is the class of the 
restriction of D to XK. Then P specializes to the element of J given by 
C l- (C D). 

Grothendieck gave another description of J in terms of the monodromy 
pairing in [6, Thm. 11.5]; see also [7]. Our aim is to compare these two de- 
scriptions. 

We choose an orientation on the graph C; i.e, we choose two maps s and 
t from S to C (s for source and t for target) such that for all edges x, s(x) and 
t(x) are the vertices meeting x. We get induced maps: 

(1.3) 8* It*: as~ Zj 8 sI t*: ,c Z S 

where (s*f)C = Es(x)=cf(x), (s*f)x = f(s(x)), etc. Note that s* is the 
adjoint, with respect to the standard inner products on 2S and EC, of s*. 
With this notation, we can define the usual boundary and coboundary maps: 

(1.4) d*:=t*-s*: 2s ) ZI d*:=t*-s*: 2c - g~. 

By definition, ker(d*) is the homology group H1 (G, 2) and coker(d*) = H1 (G, 2) 
(the isomorphisms depend on the orientation chosen). Since C is connected, 
ker(d*) = H0(G,2) is the diagonal in EC, and coker(d*) -Ho(G,2) is 2, via 
the map +: EC -* 2. A simple computation shows: 

(1.5) a -t*-s* + s*t* - SS-t*t* =-(t* - s*)(t* -s*) = -d*d*. 

Let T be the maximal torus of Jk, and let M := Hom(T, Gm,k) be its character 
group. We denote the 2-linear dual of M by MV. It is well known, e.g. 
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[6, 12.3.7] or [1, ?9.2, Ex. 8], that M and H1(G,Z) are canonically isomorphic. 
Let us give an isomorphism. The torus T is the kernel of the pull-back map 
Pic -Pic -/ where nor: xnor -- Xkc is the normalization map. For Xkk X--+Pi or/k 1X 

each x in $ we can distinguish the two elements of nor-1{x} because one of 
them lies on s(x) and one on t(x); we denote these two points by sx and tx. 
Let f be a k*-valued function on S. Then we can construct a line bundle on 
Xk whose class is in T(k) as follows: Take the trivial line bundle on Xnor, and, 
for each x in 8, identify the fiber at sx with the fibre at tx via multiplication 
by f (x). This construction induces an isomorphism between Mv and HI (G, Z) 
which does not depend on the orientation chosen. Passing to duals gives the 
desired isomorphism. From (1.5) we get the following commutative diagram: 

(1.6) 

0 0 

Z ? M 

id/ \diag , 

diag d* d 

\- Id* 

ZC 1+] I 

0 0. 

As a consequence, we have the short exact sequence: 

(1.7) 0- M. ti MV , 4 , 0. 

A computation shows that for all ml and m2 in M: 

(1.8) (i(mnl)) (m2) = EmI(X) M2(X), 

which is exactly the value at (ml, M2) of the monodromy pairing; see [6, 
Thm. 12.5] and [7]. Equations (1.7) and (1.8) together are Grothendieck's 
description of J. It follows that the diagram (1.6) gives a translation between 
Raynaud's and Grothendieck's descriptions of J. 

Our next objective is to give the relation between the descriptions of 
M in terms of X and X. Let G be the graph associated to X: The set of 
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vertices is the set C of irreducible components of Xk, the set of edges is the 
set S of singular points of Xk, and the vertices meeting an edge x are the two 
components containing x. Let r: X -* X denote the resolution morphism; it 
is the composition of blowing ups in the singular points. For x in S let w(x) 
be the "width" of the singularity at x: If 7r is a uniformizer of R then, locally 
at x for the etale topology, X is given by the equation uv =7rw(x). Let x be 
in S. It is well known that r-1{x} is a chain of w(x) - 1 projective lines. In 
terms of graphs, this means that C is obtained from G by replacing each edge 
x of G by a path of w(x) edges: 

(1.9) 

0 0 becomes * 0 * . 

It is clear that an orientation on G induces an orientation on C. We will assume 
that the orientation that we already have on C comes from an orientation on G; 
the corresponding two maps S -- C will also be denoted by s and t. It is also 
clear that H1 (G, Z) and H1 (C, Z) are canonically isomorphic, and that this 
isomorphism is compatible with the identifications of both of them with M 
(there is an isomorphism between M and H1 (G, Z) defined just as for G). 

Picture (1.9) suggests for us to consider the following maps: 

(1.10) hC: ZE , E CI-*C, hs: ES -z X - ) S y 
yEr-1x 

with C the strict transform of C. By construction, we get a commutative 
diagram: 

0 , M Z 
S d* zC + z - 0 

(I.11 I Vd ihs thc Vid 

0 , M - z zC - 0. 

Dualization gives another such diagram: 

0 diag d, Mv 

(1.12) >jjd jjv h I d 

0 diag zC d* 
, Mv , 0. 
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In this diagram hV and hv are given by: 
S C 

(1.13) h: ES ->ES) ye-> r(y), hv: ZC ZC C nr (C), 

where r*(C) is zero if r(C) is a point, and r(C) otherwise. 
The map hs from (1.10) is infective; the standard inner product on ES 

induces the following inner product on ZS: 

(1.14) (-,-) ZS X 2 ->2, (f, g) > w(x) f(x) g(x) 
xE~S 

It follows that, when we view M as a submodule of ZS and Mv as a quotient 
of it, the map (1.7) i: M -* Mv is given by: 

(1.15) (i(mi))(m2) = E w(x) ml(x) m2(x). 
xE~S 

The discussion up to here allows us to translate between Raynaud's description 
of 4P in terms of X and Grothendieck's description in terms of the Picard- 
Lefschetz formula for X. 

2. Specialization of divisors of degree zero 

We keep the notation of the previous section. Since X and X are proper 
over R, we can identify X(K), X(R) and X(R). The closure in X of an 
effective divisor on XK is a Cartier divisor. Extending this by linearity we 
associate to each divisor D on XK a Cartier divisor D on X. 

Suppose now that D is a divisor of degree zero on XK. Then the class of D 
under linear equivalence corresponds to an element, say [D], of J(K) = J(R). 
Let +(D) denote the image of [D] in 4P. By Raynaud's description of 4X, (see 
(1.2)), +(D) is given by the element (C @-> (C . D)) of 7Z. Our aim is to get 
an expression for +(D) in terms of 7C and Zs. For simplicity, we suppose 
that D has support in the set of K-rational points of X (note that since X is 
semistable, one can always reduce to this case by extending K). Let us write: 

(2.1) D = np P, 
P 

where the sum ranges through the set X(K) (of course, almost all np are zero, 
and their sum is zero). Each P in X(K) specializes to a unique element c(P) 
of C, since X is regular. With this notation, +(D) is given by the element 

Ep np c(P) of C 
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Suppose now that P is such that c(P) is not in C. Let x in S be the image 
of c(P) under the morphism r: X - X. Then we have the following situation: 

(2.2) 

S(x) X t(x) 
0 Is. in G, 

X1 X2 Xm(P) Xw(x) 

S 0 W . . . v--- * * @ @ @ - * *inG. 
c(P) 

Note that the integer m(P) is defined by the condition that c(P) is the m(P)th 
projective line in the chain of projective lines from s(x) to t(x) in X. 

Using (1.6) it follows that ((D) is represented by the sum of the following 
two contributions: 

(2.3) E np c(P) + p mps(r(c(P))) and E np m(P) r(c(P)), 
c(P)EC c(P)WC c(P)fC 

where the first contribution comes from the subgroup 7c[+] of 2c[+] and the 
second from ZS. 

The last thing we want to do in this section is to give a useful interpre- 
tation of the integers m(P). Suppose that P in X(K) is such that c(P) is 
not in C. Let x denote the element r(c(P)) of S. Let ir be a uniformizer 
of R. Let u and v be elements of the complete local ring Ox,x such that 
Oxx = R[[u, v]]/(uv - irw(x)). By interchanging u and v, if necessary, we may 
and do suppose that (u, r) is the ideal of the branch s(x). Let co,... , Cw(X) 

be the irreducible components of r-lx, numbered such that s(xi) = ci-1 and 
t(xi) = ci. For the divisor div(v) of v on the completion of X along rolx one 
has: 

w(x) 

(2.4) div(v) = E i ci. 
i=o 

To see this, note that blowing up R[u, v]/(uv - 7rn) in the ideal (u, v, wr) gives 
the singularity R[Kr-1u, r-1v]/(-1ugr-1u7v rn-2 ). Equation (2.4) gives the 
following interpretation of m(P): 

w(x) 

(2.5) m(P) = P. (m(P)c(P)) = P E ici = P* div(v) = valR(P*(v)), 
i=O 

where valR denotes the valuation on R such that valR(lr) = 1, and where 
P* is the morphism of rings Ox,x -* R induced by the morphism of schemes 
P: Spec(R) -* X. 
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3. Modular curves 

The aim of this section is to give a moduli theoretic interpretation of the 
integer m(P) in (2.5), in the case where XK is a certain modular curve. 

From now on, let p be a prime number. We suppose that K has charac- 
teristic zero and that k has characteristic p. Let X be the compactified coarse 
moduli scheme for the algebraic stack with objects ((ae: E -* E')/S/R, 13), with 
S an R-scheme, E and E' elliptic curves over S, ar an isogeny of degree p, and i3 
some prime-to-p level structure (of a fixed type) on E. By [5, V.1] or [9, 13.4], 
the R-scheme X is proper and flat, XK is smooth, and the only singularities of 
Xk are ordinary double points. We suppose that the level structure 03 is such 
that XK is geometrically irreducible. Then X satisfies the hypotheses of the 
beginning of Section 1. The special fibre Xk has two irreducible components; 
we call them COO and Co, with COO containing the cusp oc and Co the cusp 0. 
Over C, the isogeny ar is isomorphic to the relative Frobenius F: E B E(P). 
Over Co, ar is isomorphic to the Verschiebung V: (E')(P) -* E'. We choose the 
following orientation on the graph G of X: For every double point x of Xk, 
s(x) = Co and t(x) = CO. 

Let ((ae: E -* E')/IR, 3) be an R-valued point of the stack mentioned 
above, and let P in X(R) denote the induced R-valued point of X. We suppose 
that P specializes to a singular point x of Xk; this just means that Ek is 
supersingular. Let A be the deformation ring of the object corresponding to x 
(we consider deformations over complete local R-algebras with residue field k). 
By [5, V, 1.19] or [9, Thms. 5.1.1 and 13.4.7], we can take y and z in A such 
that A = R[[y, z]]/(yz - p). Let G be the group of k-automorphisms of the 
object corresponding to x. Then G acts on A, and by [5, I, 8.2.1] we have 
0Xx = AG. The two branches at x of Xk are fixed by G; hence for all g in 
G, g(y)/y and g(x)/x are units in A. Let C be the image of G in Aut(A), 
and JGJ its order. We get a subring R[[u, v]]/(uv -pIGI) of AG by sending u to 
Hgco g(y) and v to fggeo g(z). This subring is normal, and the field extension 
given by the fraction fields of this subring and of A has degree 101. It follows 
that: 

(3.1) XIx = R[[u, v]]/(uv - . 

As in Section 2, we assume that u vanishes on the branch Co, and v on CO. 
Let ((cOuniv: Euniv -* EUniv)/A, uni) denote the universal deformation. Then 
z is an equation for the maximal closed subscheme of Spec(A/pA) over which 
El is isomorphic to EUPniv (use that the analogous statement is true for the 
deformation ring over the Witt vectors of k; see [9, Thm. 13.4.7]). Since P in 
X(R) arises from the object ((ae: E -* E')/R, p3), the morphism P*: OXx > R 
is induced from a morphism P*: A -* R. The element P* (z) is an equation 
for the maximal closed subscheme of Spec(R/pR) over which E' and E(P) are 
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isomorphic. In other words, valR(P*(z)) is the maximal integer n such that 
E' and E( are isomorphic over R/7rR (as before, ir is a uniformizer of R). 
We have: 

(3.2) valR(P*()) = valR(P*(v)) = E valR(P*(g(z))) = IGI * valR(P*(z)). 
gEC 

Equation 3.1 implies that w(x) = valR(p). Putting everything together, 
we see that 

(3.3) m(P) = max{rn < valR(p) B' E over R/7r'R}. 
valR(P) 

4. Shimura curves 

We will now adapt the arguments of Section 3 to the case of certain 
Shimura curves. 

Let p and K be as in Section 3. Let BQ be an indefinite quaternion algebra 
over Q, of discriminant prime to p. Let B be a maximal order in BQ. First 
we consider the algebraic stack M with objects (E/S/R, i: B -* Ends(E), /3), 
where S is an R-scheme, E/S an abelian scheme of relative dimension two, i 
a morphism of rings, and /3 some prime-to-p level structure. See [2] for the 
proof that this category is indeed an algebraic stack, and that it is proper and 
smooth of relative dimension one over R. We suppose that the level structure 
f is such that the fibres of M/R are geometrically irreducible. We combine 
[2, p. 54] with [3, III, 1.5] and see that each such E/S with B-action has a 
canonical principal polarization (the unique principal *-polarization). 

In [5, Introduction, ?7] it is explained how the results of [5] and [9] for 
modular curves imply results for M. Let e be a nontrivial idempotent in Zp? B 
(recall that B is split at p). Let (E/S, i, /3) be an object of M. Since Zp 0 B 
acts on the p-divisible group E[p'] of E, we get a direct sum decomposition 

(4.1) E[p'] = eE[p'] ? (1 - e)E[p']. 

The two terms in this decomposition are isomorphic, since e and 1- e are conju- 
gates. The construction G @-> eG defines an equivalence between the category 
of p-divisible S-groups with an action by B and the category of p-divisible S- 
groups. Via this equivalence, we can apply the Drinfeldian level structures of 
[9, ?1.9] to M. We will only consider the level structure corresponding to the 
Fo (p) level structure in the modular curve case: It associates to (E/S/R, i) the 
set of finite locally free subgroup schemes of rank p of eE[p??], or, equtiivalently, 
the set of isogenies ar: (E, i) -* (E', i') (up to isomorphism) of degree p2, with 
i': B -* End(E') and oa compatible with i and i'. 
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Let X be the coarse moduli space for the algebraic stack with objects 
((a: E -* E')/S/R,f), with S an R-scheme, E and E' abelian S-schemes 
of relative dimension two, equipped with an action by B, ar as isogeny of 
degree p2, and i3 a prime-to-p level structure as above. Let x be a closed 
point of Xk. Let x ((ao: E -* E')/k, d) be the object corresponding to x. 
Then eE[p'] is a p-divisible group over k, of height two and with associated 
formal group of dimension one. The classification of p-divisible groups over 
algebraically closed fields implies that eE[p'] is isomorphic to the p-divisible 
group of some elliptic curve F over k (in fact, if eE[p'] is purely local, then 
any supersingular elliptic curve will do, otherwise any ordinary elliptic curve 
does the job). By the theorem of Serre and Tate [8] and the equivalence 
above, the deformation theory of x~ is equivalent to that of (F/k, e ker(a)) 
(again, we consider deformations to complete local R-algebras). It follows that 
the deformation ring of x~ is isomorphic to that of (F/k, e ker(a)). It follows 
that the only singularities of Xk are ordinary double points. One now easily 
shows, by constructing an ample divisor, that the algebraic space X is in fact a 
projective curve over R, satisfying the hypotheses of the beginning of Section 1. 
(An other way to see that X is a quasi-projective scheme is to prove that the 
morphism from M to the stack of two-dimensional principally polarized abelian 
varieties is representable and projective (use Hilbert schemes); see [4, ?5.3].) 
We orient the graph G of X by demanding that for each singular point x of Xk, 
s(x) is the branch on which ar is generically etale. The following proposition 
is now a direct consequence of the results of the preceding sections. 

PROPOSITION 4.2. Let P in X(R) be induced by an object 
((a: E -* E')/R,f). Suppose that P specializes to a singular point x of Xk. 
Then the integer m(P) of (2.5) is given by: 

m(P) = () max{rn < valR(p) E' = E( over R/1r7R}. valR(P) 
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